Kinetics of the 1:1 Complexing of Oxalate to Hexa-aquamolybdenum(III) †

Helen M. Kelly, David T. Richens, and A. Geoffrey Sykes • Department of Inorganic Chemistry, The University, Newcastle upon Tyne NE1 7RU

The kinetics of the 1:1 equilibration of oxalate with $[Mo(H_2O)_6]^{3+}$ have been investigated spectrophotometrically at 350 nm in aqueous *p*-toluenesulphonic acid (Hpts) at 25 °C, *l* = 1.0 M [Li(pts)]. For the range of $[H^+]$ values studied, 0.35–0.90 M, protonated forms of oxalate are present. The $[H^+]$ dependence, equation (i), is consistent with $HC_2O_4^-$ and not $H_2C_2O_4$ (acid dissociation

$$k_{eq} = \frac{k_1 K_a [Mo^{3+}]}{[H^+] + K_a} + k_{-1} [H^+]$$
(i)

constant $K_{\bullet} = 0.084$ M at 25 °C) as the dominant reactant, where k_1 and k_{-1} are as defined in equation (ii). At 25 °C, $k_1 = 0.49 \pm 0.1$ M⁻¹ s⁻¹ and $k_{-1} = (4.2 \pm 0.2) \times 10^{-4}$ M⁻¹ s⁻¹, giving an

$$Mo^{3+} + HC_2O_4^{-} = \frac{k_1}{k_1} Mo(C_2O_4)^{+} + H^{+}$$
 (ii)

equilibrium constant of 1 170 \pm 100, which is in agreement with an independently determined value of 1 230 \pm 460. Using trifluoromethanesulphonic acid instead of Hpts, k_1 is 15% higher but k_{-1} remains unchanged. The results are discussed in terms of a model in which the oxalate chelates to the metal.

The preparation of $[Mo(H_2O)_6]^{3+}$ using air-free techniques and avoiding the use of perchlorate is now well documented.¹⁻³ Kinetic studies on the 1:1 substitution reactions of $[Mo-(H_2O)_6]^{3+}$ with NCS⁻ and Cl⁻ have previously been reported,³ and are of interest for two reasons: (a) a large difference in formation rate constants is observed for NCS⁻ (0.28 M⁻¹ s⁻¹) and Cl⁻ (4.6 × 10⁻³ M⁻¹ s⁻¹) at 25 °C; and (b) $[Mo(H_2O)_6]^{3+}$ reacts $\approx 10^5$ times faster with NCS⁻ than its congenor $[Cr(H_2O)_6]^{3+}$.⁴ Both these observations suggest an extensive associative contribution to the substitution process. Here we seek to extend existing information by considering the reaction of $[Mo(H_2O)_6]^{3+}$ with oxalate.

Experimental

Preparation of Reactants.—Hexa-aquamolybdenum(III) was prepared as described previously by aquation of $K_3[MoCl_6]$ in 0.50 M p-toluenesulphonic acid (Hpts), and subsequent purification on a Dowex 50WX2 column. Oxalic acid (B.D.H. AnalaR) and Hpts (Sigma) were used without further purification. To prepare Li(pts), 4 M Hpts was neutralised by addition of Li₂CO₃ (B.D.H. Reagent Grade) followed by recrystallisation. Solutions of Li(pts) were standardised by ion exchange onto Amberlite IR(H) 120 resin and titration of the H⁺ released. Trifluoromethanesulphonic acid (Htfms) from Aldrich was purified by distillation under reduced pressure (≈ 10 mmHg). A sample of Li(tfms) was prepared by the same procedure as for Li(pts).

Kinetic Studies.—Runs were slow enough to monitor in a conventional manner using Perkin-Elmer Lambda 5 and Pye-Unicam SP500 instruments. The $[Mo(H_2O)_6]^{3+}$ reactant was in large 10-fold excess of the total oxalate to avoid formation of higher oxalate complexes. Ionic strengths were adjusted to 1.0 M (pts). Kinetic plots of absorbance (A) changes at 350 nm, ln $(A_{\infty} - A_t)$ against time t, where A_{∞} was the observed final absorbance for equilibrated solutions, were linear to 90% completion. The slope of such plots gave first-order equili-

bration rate constants k_{eq} . Because of the sensitivity of $[Mo(H_2O)_b]^{3+}$ to air oxidation, and possibility of air leakage giving incorrect A_{∞} , the Guggenheim method was also used to evaluate rate constants.⁵ The previously determined acid dissociation constant K_a , equation (1), of 0.084 M at 25 °C,

$$H_2C_2O_4 \stackrel{K_4}{\longleftarrow} HC_2O_4^- + H^+ \qquad (1)$$

I = 1.0 M (NaClO₄),⁶ has been used. The second acid dissociation constant, pK_a 3.55, indicates that for $[H^+] \ge 0.35$ M amounts of $C_2O_4^{2-}$ are small and can probably be neglected.

Equilibrium Constant.—Solutions of $[Mo(H_2O)_6]^{3+}$ and oxalate, under the same conditions as for kinetic runs, were allowed to equilibrate and final absorbance A_{∞} values at 350 nm recorded. For the equilibrium (2) equation (3) can be

$$Mo^{3+} + HC_2O_4^{-} \stackrel{K_1}{\longrightarrow} Mo(C_2O_4)^{+} + H^{+}$$
 (2)

$$\frac{[\mathrm{ox}]_{\mathrm{T}}}{(A_{\infty} - A_{0})} = \frac{[\mathrm{H}^{+}]([\mathrm{H}^{+}] + K_{\mathrm{a}})}{K_{\mathrm{a}}(\varepsilon_{1} - \varepsilon_{0})[\mathrm{Mo}^{3+}]} \cdot \frac{1}{K_{1}} + \frac{1}{(\varepsilon_{1} - \varepsilon_{0})} \qquad (3)$$

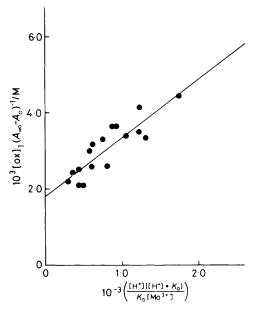
derived, where ε_0 is the absorption coefficient for $[Mo(H_2O)_6]^{3+}$ (15 M⁻¹ cm⁻¹), ε_1 is for the 1 : 1 oxalate complex at 350 nm, and $[ox]_T$ represents total oxalate. From a plot (Figure 1) of $[ox]_T/(A_{\infty} - A_0)$ against $[H^+]([H^+] + K_a)/K_a[Mo^{3+}]$ the equilibrium constant K_1 for (2) is 1 230 ± 460, with $\varepsilon_1 =$ 544 ± 105 M⁻¹ cm⁻¹.

Treatment of Data.—A non-linear least-squares fit of data was used (weighting unity) to obtain K_1 , k_1 , and k_{-1} .

Results

Equilibrium rate constants, k_{eq} , are listed in Table 1. These give a good fit to the expression (4) which can be derived from consideration of (1) and (2) with k_1 and k_{-1} the forward and back rate constants in (2). Figure 2 is a plot of k_{eq} against [Mo³⁺] illustrating this behaviour. The intercepts give a first-

[†] Non-S.I. units employed: $M = mol dm^{-3}$, mmHg ≈ 133 Pa.



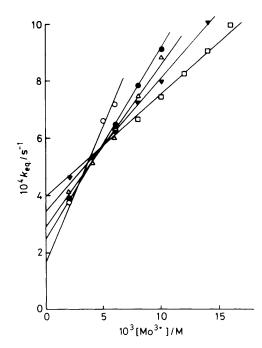

Figure 1. Determination of the equilibrium constant (25 °C) for the equilibration of $[Mo(H_2O)_6]^{3+}$ with oxalate from equation (3), I = 1.0 M [Li(pts)]

Table 1. Equilibration rate constants at 25 °C for the complexing of oxalate with $[Mo(H_2O)_6]^{3+}$ (present in ≥ 10 -fold excess), I = 1.0 M [Li(pts)]

[H ⁺]/M	10 ³ [Mo ³⁺]/M	$10^4 k_{eq}/s^{-1}$
0.35	2.0	3.8
	4.0	5.2
	5.0	6.3
	6.0	7.2
0.50	2.0	3.9
	4.0	5.3
	6.0	6.5
	8.0	7.9
	10.0	9.1
0.60	2.0	4.1
	4.0	5.2
	6.0	6.0
	8.0	7.5
	10.0	8.9
0.75	2.0	4.6
	6.0	6.2
	8.0	7.2
	10.0	8.0
	14.0	10.2
0.90	4.0	5.2
	6.0	6.3
	8.0	6.7
	10.0	7.5
	12.0	8.3
	14.0	90
	16.0	10.1

order dependence on $[H^+]$ with a small $[H^+]$ -independent contribution of $(0.38 \pm 0.08) \times 10^{-4} \text{ s}^{-1}$ (which may be spurious), and the slopes a linear plot against $([H^+] + K_a)^{-1}$. Alternatively a plot of $k_{eq}/[H^+]$ against $K_a[Mo^{3+}][H^+]^{-1/-1}$

$$k_{eq} = \frac{k_1 K_a [Mo^{3^+}]}{[H^+] + K_a} + k_{-1} [H^+]$$
(4)

Figure 2. Dependence of equilibration rate constants (25 °C) for the complexing of $[Mo(H_2O)_6]^{3+}$ (reactant in large excess) with oxalate, I = 1.0 M [Li(pts)]; $[H^+] = 0.35$ (\bigcirc), 0.05 (\bullet), 0.60 (\triangle), 0.75 (\blacktriangledown), and 0.90 M (\Box)

Table 2. Summary of rate constants for the 1 : 1 anation (k_1) and aquation (k_{-1}) of $[Mo(H_2O)_6]^{3+}$, I = 1.0 M [Li(pts)]

Ligand	$k_1/M^{-1} s^{-1}$	$k_{-1}/M^{-1} s^{-1}$	Ref.
HC₂O₄⁻	0.49	0.00042	This work
NCS-	0.27	small	3
Cl-	0.0046	0.00043 •	3
' Units s ⁻¹ .			

 $(K_a + [H^+])$ is linear. From a non-linear least-squares fit to (4), $k_1 = 0.49 \pm 0.1$ M⁻¹ s⁻¹ and $k_{-1} = (4.2 \pm 0.2) \times 10^{-4}$ M⁻¹ s⁻¹. These results are shown in Table 2 alongside data for the reactions with NCS⁻ and Cl⁻.

On replacing Hpts by Htfms, k_1 increases by 15% whereas k_{-1} remains unchanged. An effect of similar magnitude has been observed in check runs on the reaction of $[Mo(H_2O)_6]^{3+}$ with NCS⁻.

Discussion

The range of formation rate constants for substitution on $[Mo(H_2O)_6]^{3+}$ is now ≈ 100 , Table 2, consistent with an associative mechanism. It is of interest to compare the reaction of $[Mo(H_2O)_6]^{3+}$ with oxalate to that of $[Fe(H_2O)_6]^{3+}$, for which $K_1 = 1.1 \times 10^{4.6}$ In the latter, complexation proceeds via the conjugate base $Fe(OH)^{2+}$ as well as Fe^{3+} . A small [H⁺]-independent contribution to k_{-1} has been noted in the present study. Since in the complexing of NCS⁻ and Cl⁻ no participation of Mo(OH)2+ was observed, we are inclined to view this effect as spurious, and certainly too small to quantify in a more meaningful way. That there is no contribution from the conjugate-base form can be understood if an associative pathway involving the hexa-aqua-ion is very much more favourable, so that it excludes any significant contribution from the conjugate-base form. Similar behaviour has been observed with $[V(H_2O)_6]^{3+7,8}$ and $[Ti(H_2O)_6]^{3+,9}$ and appears to be a feature of metal ions having low *d*-electron populations, which can react in an associative manner.

The $[H^+]$ dependence for k_{-1} suggests that the oxalate chelates to the metal and in the process deprotonates to give $[Mo(H_2O)_4(C_2O_4)]^+$, a situation which would not arise if the oxalate remained monodentate. A two-stage process can be written as in equations (5) and (6), and its implications examined. If it is assumed that the concentration of the mono-

$$[Mo(H_2O)_6]^{3+} + HC_2O_4^{-} + \frac{k_a}{k_{-a}} [Mo(H_2O)_5(HC_2O_4)]^{2+} + H_2O$$
(5)

$$[Mo(H_2O)_5(HC_2O_4)]^{2+} \xrightarrow{k_b}_{k_{-b}} [Mo(H_2O)_4(C_2O_4)]^+ + H_2O + H^+$$
(6)

dentate species is given by the steady-state approximation, it can be shown that expressions (7) and (8) hold. On arranging

$$k_1 = \frac{k_{\mathbf{a}}k_{\mathbf{b}}}{k_{-\mathbf{a}} + k_{\mathbf{b}}} \tag{7}$$

$$k_{-1} = \frac{k_{-a}k_{-b}}{k_{-a} + k_{b}}$$
(8)

equation (7) it follows that $k_a = k_1(1 + k_{-a}/k_b)$, or alternatively that k_a is always greater than k_1 . Making the assumption $k_b \gg k_{-a}$ to the reverse reaction, it follows that $k_{-1} = k_{-a}/(k_b k_{-b})$. The implication of the experimental k_{-1} value (0.00042 M⁻¹ s⁻¹) is that k_b/k_{-b} for chelation/dechelation is numerically much bigger than k_{-a} for dissociation of HC₂O₄⁻.

The value of k_1 for HC₂O₄⁻ (0.49 M⁻¹ s⁻¹) is similar to the

rate constant (0.34 $M^{-1} s^{-1}$) for the oxidant-dependent pathway in the $[Co(C_2O_4)_3]^{3-}$ oxidation of $[Mo(H_2O)_6]^{3+}$.¹⁰ For the reasons given it has been suggested that the latter is a substitution-controlled redox process.

The 15% difference in rate constant k_1 when Htfms replaces Hpts suggests that the relevant anions may to some (possibly small) extent be complexing to the metal, or alternatively that there is a medium effect.

Acknowledgements

We thank Climax Molybdenum for support under an S.E.R.C. C.A.S.E. studentship (to H. M. K.).

References

- 1 A. R. Bowen and H. Taube, J. Am. Chem. Soc., 1971, 93, 3287.
- 2 A. R. Bowen and H. Taube, Inorg. Chem., 1974, 13, 2245.
- 3 Y. Sasaki and A. G. Sykes, J. Chem. Soc., Chem. Commun., 1973, 767; J. Chem. Soc., Dalton Trans., 1975, 1048.
- 4 J. H. Espenson, Inorg. Chem., 1969, 8, 1554.
- 5 A. A. Frost and R. G. Pearson, 'Kinetics and Mechanism,' 2nd edn., Wiley, New York, 1961, p. 49.
- 6 E. G. Moorhead and N. Sutin, Inorg. Chem., 1966, 5, 1866.
- 7 R. C. Patel and H. Diebler, Ber. Bunsenges. Phys. Chem., 1972, 76, 1035.
- 8 B. R. Baker, N. Sutin, and T. J. Welch, *Inorg. Chem.*, 1967, 6, 1948.
- 9 H. Diebler, Z. Phys. Chem. (Frankfurt am Main), 1969, 68, 64.
- 10 D. T. Richens and A. G. Sykes, J. Chem. Soc., Chem. Commun., 1983, 616; D. T. Richens, M. A. Hamer, and A. G. Sykes, J. Chem. Soc., Dalton Trans., in the press.

Received 31st August 1983; Paper 3/1517